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The Hunter–Saxton equation describes the geodesic flow on a sphere
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Abstract

The Hunter–Saxton equation is the Euler equation for the geodesic flow on the quotient space Rot(S)\D(S) of the infinite-
dimensional group D(S) of orientation-preserving diffeomorphisms of the unit circle S modulo the subgroup of rotations Rot(S)
equipped with the Ḣ1 right-invariant metric. We establish several properties of the Riemannian manifold Rot(S)\D(S): it has
constant curvature equal to 1, the Riemannian exponential map provides global normal coordinates, and there exists a unique
length-minimizing geodesic joining any two points of the space. Moreover, we give explicit formulas for the Jacobi fields, we
prove that the diameter of the manifold is exactly π

2 , and we give exact estimates for how fast the geodesics spread apart. At the
end, these results are given a geometric and intuitive understanding when an isometry from Rot(S)\D(S) to an open subset of an
L2-sphere is constructed.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Hunter–Saxton equation

ut xx = −2ux uxx − uuxxx , t > 0, x ∈ R, (1.1)

models the propagation of weakly nonlinear orientation waves in a massive nematic liquid crystal director field, x
being the space variable in a reference frame moving with the unperturbed wave speed and t being a slow time
variable [7]. The liquid crystal state is a distinct phase of matter observed between the solid and liquid states. A
nematic liquid crystal is characterized by long rigid molecules that have no positional order but tend to point in
the same direction (along the director). In Eq. (1.1) u(t, x) is a measure of the average orientation of the medium
locally around x at time t (see [2] for a further discussion of the physical interpretation of (1.1)). Eq. (1.1) is a bi-
variational, completely integrable system with a bi-Hamiltonian structure, implying the existence of an infinite family
of commuting Hamiltonian flows together with an infinite sequence of conservation laws [8]. For spatially periodic
functions, (1.1) describes the geodesic flow on the homogeneous space Rot(S)\D(S) of the infinite-dimensional group
D(S) of orientation-preserving diffeomorphisms of the unit circle S modulo the subgroup of rotations Rot(S), endowed

E-mail address: jonatan@math.ucsb.edu.

0393-0440/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2007.05.003

http://www.elsevier.com/locate/jgp
mailto:jonatan@math.ucsb.edu
http://dx.doi.org/10.1016/j.geomphys.2007.05.003


2050 J. Lenells / Journal of Geometry and Physics 57 (2007) 2049–2064

with the Ḣ1 right-invariant metric given at the identity by 〈u, v〉id =
1
4

∫
S uxvx dx [9]. In fact, the Hunter–Saxton

equation together with the well-known Korteweg–de Vries [15] and Camassa–Holm [3,4,14,16] equations describe
all generic bi-Hamiltonian systems related to the Virasoro group (a one-dimensional extension of D(S)) that can be
integrated by the translation argument principle [9].

The hope is that the geometric interpretation of these nonlinear wave equations would provide additional insight
into properties of their solutions. For example the rate at which geodesics spread apart is connected to the curvature
of the underlying manifold, so that a positive sectional curvature would imply, at least formally, stability of the
geodesic flow. However, in the cases of the Camassa–Holm and Korteweg–de Vries equations on the Virasoro group
the sectional curvature does not have a definite sign [13,14], which makes it difficult to draw valuable conclusions.
In this paper we prove that the situation for the Hunter–Saxton equation is quite different: the space Rot(S)\D(S)
endowed with the Ḣ1 right-invariant metric has constant positive sectional curvature. Moreover, it is shown that the
Riemannian exponential map is a global diffeomorphism from a subset of the tangent space of the identity to all of
Rot(S)\D(S), providing global normal coordinates that are useful for the study of Rot(S)\D(S). We prove that the
diameter of the manifold is exactly π

2 , and that there exist no conjugate points along any geodesics. This is related to
another result: there exists a unique, globally length-minimizing, geodesic joining any two points of the manifold.

Two different choices for the space D(S) are possible: we may consider the Fréchet Lie group D∞(S) of smooth
orientation-preserving diffeomorphism of S, or the Banach manifoldDk(S) of orientation-preserving diffeomorphisms
of the circle of Sobolev class H k for k ≥ 3. The Banach manifold structure of Dk(S) for k ≥ 3 is more pleasant than
the Fréchet manifold structure ofD∞(S). On the other hand, the group operation onD∞(S) is smooth, whereasDk(S)
is only a topological group: right multiplication Rϕ : ψ 7→ ψ ◦ ϕ is smooth, but left multiplication Lψ : ϕ 7→ ψ ◦ ϕ

is continuous but not C1 (see [6]). For the sake of definiteness we choose in this paper to consider the case of Dk(S)
with k ≥ 3.

In Section 2 we review the Riemannian manifold structure of the space Rot(S)\Dk(S) equipped with the Ḣ1 right-
invariant metric. Its curvature is considered in Section 3. Explicit formulas for the Jacobi fields are given in Section 4,
before the Riemannian exponential map is studied in Section 5. In Section 6 we show that the geodesics are globally
length-minimizing, while the following section contains a construction of an isometry from Rot(S)\Dk(S) to an open
subset of the L2-sphere of radius one. Finally, Section 8 contains some conclusions and remarks.

2. The Riemannian manifold Rot(S)\Dk(S)

We first need to review some properties of the space Rot(S)\Dk(S) (see [12] for more details).
Let k ≥ 3. LetDk(S) denote the Banach manifold of orientation-preserving diffeomorphisms of S of Sobolev class

H k . By Rot(S) ⊂ Dk(S) we denote the subgroup of rotations x 7→ x + d for some d ∈ R. Let Rot(S)\Dk(S) be the
space of right cosets Rot(S) ◦ ϕ = {ϕ(·) + d | d ∈ R} for ϕ ∈ Dk(S), and put Mk

= {ϕ ∈ Dk(S) | ϕ(0) = 0}. Note
that

Mk
= {u + id | u ∈ H k(S), ux > −1, u(0) = 0}, (2.1)

so that Mk is an open subset of the closed hyperplane id + Ek
⊂ H k(S), where Ek is the closed linear subspace

Ek
= {u ∈ H k(S) | u(0) = 0}. The map [ϕ] 7→ ϕ − ϕ(0), where [ϕ] denotes the equivalence class of ϕ

in Rot(S)\Dk(S), is a diffeomorphism Rot(S)\Dk(S) → Mk . In other words, Mk provides a global chart for
Rot(S)\Dk(S). In the sequel all the tangent spaces TϕMk , ϕ ∈ Mk , will be identified with Ek using this chart,
albeit we normally keep the tangent space notation in order to make it clear where the different objects live.

Let A = −D2
x and let Fk−2 be the subspace { f ∈ H k−2(S) |

∫
S f dx = 0}. Then A|Ek is an isomorphism

Ek
→ Fk−2. Let A−1 be its inverse given by

(A−1 f )(x) = −

∫ x

0

∫ y

0
f (z)dzdy + x

∫
S

∫ y

0
f (z)dzdy, f ∈ Fk−2.

The Ḣ1 right-invariant metric is defined for two tangent vectors U, V ∈ TϕMk
' Ek at ϕ ∈ Mk by

〈U, V 〉ϕ =
1
4

∫
S
(U ◦ ϕ−1)A(V ◦ ϕ−1)dx =

1
4

∫
S

Ux Vx

ϕx
dx .
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The reason for the introduction of the factor 1
4 will become evident in Section 7. We write | · |ϕ for the norm induced

by 〈·, ·〉ϕ on TϕMk , that is, |U |
2
ϕ =

1
4

∫
S

U 2
x
ϕx

dx . There exists a covariant derivative ∇ compatible with the Ḣ1 right-
invariant metric given in the global chart Mk by

(∇X Y )(ϕ) = DY (ϕ) · X (ϕ)− Γ (ϕ, Y (ϕ), X (ϕ)), (2.2)

where Γ : Mk
× Ek

× Ek
→ Ek is a smooth Christoffel map defined by

Γ (ϕ,U, V ) = −
1
2

(
A−1 Dx [(U ◦ ϕ−1)x (V ◦ ϕ−1)x ]

)
◦ ϕ. (2.3)

Note that Γ is right-invariant in the sense that

Γ (ϕ,U, V ) ◦ ψ = Γ (ϕ ◦ ψ,U ◦ ψ, V ◦ ψ), ϕ,ψ ∈ Mk, U, V ∈ Ek . (2.4)

The geodesics of the Ḣ1 right-invariant metric are described by Eq. (1.1). More precisely, let J ⊂ R be an open
interval and let ϕ : J → Dk(S) be a C2-curve. Then the curve u : J → TidDk(S) defined by

u : t 7→ ϕt (t) ◦ ϕ(t)−1

satisfies the Hunter–Saxton equation

ut xx = −2ux uxx − uuxxx , (2.5)

if and only if the curve [ϕ] : J → Rot(S)\Dk(S) given by [ϕ] : t 7→ [ϕ(t)] is a geodesic with respect to ∇. The
geodesics in Rot(S)\Dk(S) ' Mk can be found explicitly by the method of characteristics: for u0 ∈ Tid Mk with
|u0|id = 1 the unique geodesic ϕ : [0, T ∗(u0)) → Mk with ϕ(0) = id and ϕt (0) = u0 is given by

ϕ(t) = id −
1
8

(
A−1 Dx (u2

0x )
)
(1 − cos 2t)+

u0

2
sin 2t,

where the maximal time of existence is

T ∗(u0) =
π

2
+ arctan

(
1
2

min
x∈S

u0x (x)
)
<
π

2
. (2.6)

For future reference we also note that√
ϕx (t, x) = cos t +

u0x (x)
2

sin t, t ∈ [0, T ∗(u0)), x ∈ S, (2.7)

and

(ux ◦ ϕ)(t, x) = 2 tan
(

arctan
(

u0x (x)
2

)
− t
)
, t ∈ [0, T ∗(u0)), x ∈ S. (2.8)

By definition a vector field V : J → T Mk along a C2-curve ϕ : J → Mk is ϕ-parallel if ∇ϕt V ≡ 0. Define
u, v : J → Tid Mk by

v(t) = V (t) ◦ ϕ(t)−1, u(t) = ϕt (t) ◦ ϕ(t)−1.

Then V is ϕ-parallel if and only if u and v solve the equation

vt xx = −
3
2
vxx ux −

1
2
vx uxx − vxxx u, t ∈ J, x ∈ S. (2.9)

3. Curvature

In this section we compute the curvature of the Riemannian manifold Rot(S)\Dk(S) ' Mk equipped with Ḣ1

right-invariant metric. In particular, we find the sectional curvature to be constant equal to 1. Recall that the curvature
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tensor R is defined for vector fields X, Y, Z on Rot(S)\Dk(S) by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z .

Theorem 3.1. The curvature tensor of Rot(S)\Dk(S) ' Mk endowed with the Ḣ1 right-invariant metric is given for
vector fields X, Y, Z by

R (X, Y ) Z = X〈Y, Z〉 − Y 〈X, Z〉. (3.1)

In particular, Rot(S)\Dk(S) has constant sectional curvature equal to 1.

Proof. In the chart Mk we have the following local formula for R in terms of the Christoffel map (cf. [10])

R(U, V )W = D1Γ (ϕ,W,U )V − D1Γ (ϕ,W, V )U + Γ (ϕ,Γ (ϕ,W, V ),U )− Γ (ϕ,Γ (ϕ,W,U ), V ),

U, V,W ∈ TϕMk
' Ek . (3.2)

By the right-invariance (2.4) of Γ , it holds that R(U, V )W = R(u, v)w if U, V,W ∈ TϕMk and u, v, w ∈ Tid Mk

satisfy u = U ◦ ϕ−1, v = V ◦ ϕ−1, and w = W ◦ ϕ−1. Therefore, it is enough to consider the curvature at the identity
id ∈ Mk .

Using (2.3) we compute, for U, V,W ∈ TϕMk ,

D1Γ (ϕ,W,U )V = −
1
2

d
dε

∣∣∣∣
ε=0

(
A−1 Dx

(
(W ◦ (ϕ + εV )−1)x (U ◦ (ϕ + εV )−1)x

))
◦ (ϕ + εV )

=
1
2

(
A−1 Dx

(
((W ◦ ϕ−1)x V ◦ ϕ−1)x (U ◦ ϕ−1)x

))
◦ ϕ

+
1
2

(
A−1 Dx

(
(W ◦ ϕ−1)x ((U ◦ ϕ−1)x V ◦ ϕ−1)x

))
◦ ϕ

−
1
2

(
A−1 Dx

(
(W ◦ ϕ−1)x (U ◦ ϕ−1)x

))
x

◦ ϕ · V,

where we used that

d
dε

∣∣∣∣
ε=0

U ◦ (ϕ + εV )−1
= −(U ◦ ϕ−1)x V ◦ ϕ−1. (3.3)

Therefore, for u, v, w ∈ Tid Mk ,

D1Γ (id, w, u)v =
1
2

A−1 Dx ((wxv)x ux )+
1
2

A−1 Dx (wx (uxv)x )−
1
2
vDx A−1 Dx (wx ux ) . (3.4)

Moreover, for f ∈ H k(S),

Dx A−1 Dx f = − f +

∫
S

f dx . (3.5)

Hence (3.4) may be simplified as

D1Γ (id, w, u)v =
1
2

A−1 Dx (wxxvux + 2uxvxwx + wx uxxv)+
1
2
vwx ux −

1
2
v

∫
S
wx ux dx .

We arrive at

D1Γ (id, w, u)v − D1Γ (id, w, v)u =
1
2

A−1 Dx (wxx (vux − uvx )+ wx (uxxv − uvxx ))

+
1
2
wx (vux − uvx )−

1
2
v

∫
S
wx ux dx +

1
2

u
∫
S
wxvx dx .

Furthermore, as wx (vux − uvx ) ∈ Ek ,

A−1 Dx (wxx (vux − uvx )+ wx (uxxv − uvxx )) = A−1 D2
x (wx (vux − uvx )) = −wx (vux − uvx ).
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We get

D1Γ (id, w, u)v − D1Γ (id, w, v)u = −
1
2
v

∫
S
wx ux dx +

1
2

u
∫
S
wxvx dx . (3.6)

On the other hand,

Γ (id,Γ (id, w, v), u)− Γ (id,Γ (id, w, u), v)

= −
1
2

A−1 Dx

((
−

1
2

A−1 Dx (wxvx )

)
x

ux

)
+

1
2

A−1 Dx

((
−

1
2

A−1 Dx (wx ux )

)
x
vx

)
=

1
4

A−1
((

D2
x A−1 Dx (wxvx )

)
ux

)
+

1
4

A−1
((

Dx A−1 Dx (wxvx )
)

uxx

)
−

1
4

A−1
((

D2
x A−1 Dx (wx ux )

)
vx

)
−

1
4

A−1
((

Dx A−1 Dx (wx ux )
)
vxx

)
.

Using the identity D2
x A−1 Dx = −Dx and (3.5), we rewrite this as

1
4

A−1 (−(wxvx )x ux + (wx ux )xvx )+
1
4

A−1
((

−wxvx +

∫
S
wxvx dx

)
uxx

)
−

1
4

A−1
((

−wx ux +

∫
S
wx ux dx

)
vxx

)
.

Since u, v ∈ Ek , we have A−1(uxx ) = −u and A−1(vxx ) = −v. We obtain

Γ (id,Γ (id, w, v), u)− Γ (id,Γ (id, w, u), v)

=
1
4

A−1 (−wxvxx ux + wx uxxvx )+
1
4

A−1 (−wxvx uxx + wx uxvxx )−
1
4

u
∫
S
wxvx dx +

1
4
v

∫
S
wx ux dx .

Thus

Γ (id,Γ (id, w, v), u)− Γ (id,Γ (id, w, u), v) = −
1
4

u
∫
S
wxvx dx +

1
4
v

∫
S
wx ux dx . (3.7)

Adding (3.6) and (3.7) we conclude that

R(u, v)w = D1Γ (id, w, u)v − D1Γ (id, w, v)u + Γ (id,Γ (id, w, v), u)− Γ (id,Γ (id, w, u), v)

=
1
4

(
u
∫
S
wxvx dx − v

∫
S
wx ux dx

)
= u〈v,w〉id − v〈u, w〉id .

This completes the proof of formula (3.1).
To conclude that the sectional curvature is constant and equal to 1, we note that by definition

Sec(X, Y ) =
〈R(X, Y )Y, X〉

〈X, X〉〈Y, Y 〉 − 〈X, Y 〉2 .

It is straightforward to check that the expression (3.1) for R implies that this equals 1 for any vector fields X, Y . �

4. Jacobi fields

Our next task will be to compute the Jacobi fields along geodesics in Rot(S)\Dk(S) ' Mk . Let ϕ : [0, T ∗(u0)) →

Mk be a geodesic such that ϕ(0) = id and ϕt (0) = u0 for some element u0 ∈ Tid Mk with |u0|id = 1. Recall that a
vector field W : [0, T ∗(u0)) → T Mk along ϕ is a Jacobi field if and only if it satisfies the Jacobi differential equation

∇
2
ϕt

W = R(ϕt ,W )ϕt .

Forw0 ∈ Tid Mk we let t 7→ W (t;w0) be the unique Jacobi field along ϕ with W (0;w0) = 0 and ∇ϕt W (0;w0) = w0.
There is a unique way to write w0 in the form w0 = c0v0 + c1u0 with c0, c1 ∈ R and v0 ∈ Tid Mk orthogonal to u0,
i.e. 〈v0, u0〉id = 0. Since Mk has constant curvature 1 we get (see [10] for further details)

W (t;w0) = c0tϕt (t)+ c1V (t; v0) sin t, (4.1)
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where t 7→ V (t; v0) is the parallel translation of v0 along ϕ, i.e. V is the unique vector field along ϕ such that
V (0; v0) = v0 and ∇ϕt V ≡ 0. We deduce that the first conjugate point of id along ϕ is ϕ(π/2). However, formula
(2.6) for the maximal existence time of ϕ says that T ∗(u0) <

π
2 , so we see that there are no points conjugate to id in

Mk . By right-invariance of the metric we infer the following.

Proposition 4.1. There are no conjugate points along any geodesics in Rot(S)\Dk(S). �

To find an explicit formula for the Jacobi field we need to find an expression for the parallel translation t 7→ V (t; v0)

in (4.1). This is the objective of the next lemma.

Lemma 4.2. Let ϕ : J → Rot(S)\Dk(S) ' Mk be the geodesic with ϕ(0) = id and ϕt (0) = u0 for u0 ∈ Tid Mk

with |u0|id = 1. For v0 ∈ Tid Mk let t 7→ V (t) be the parallel translation of v0 along ϕ, that is, V is the unique lift of
ϕ to the tangent bundle such that V (0) = v0 and ∇ϕt V ≡ 0 on J . Then

Vx (t, x) =
√
ϕx

(
−2〈u0, v0〉id

(
sin t +

u0x

2
(1 − cos t)

)
+ v0x

)
. �

Proof. Define u, v : J → Tid Mk by

v(t) = V (t) ◦ ϕ(t)−1, u(t) = ϕt (t) ◦ ϕ(t)−1.

By (2.9), u and v satisfy

vt xx = −
3
2
vxx ux −

1
2
vx uxx − vxxx u, t ∈ J, x ∈ S.

Integrating with respect to x we obtain

vt x = −vxx u −
1
2
vx ux + d(t), t ∈ J, x ∈ S, (4.2)

for some function d : J → R. To determine d we integrate both sides of (4.2) over S to find

d(t) = −
1
2

∫
S
vx ux dx = −2〈v, u〉id .

Since V is parallel translated along ϕ, the inner product 〈V, ϕt 〉ϕ is preserved along ϕ. By right-invariance of the
metric 〈v, u〉id = 〈V, ϕt 〉ϕ , so that d(t) ≡ −2〈v0, u0〉id = d is independent of t ∈ J . We conclude that v and u solve
the equation

vt x = −vxx u −
1
2
vx ux + d, t ∈ J, x ∈ S.

Since

(vx ◦ ϕ)t = vt x ◦ ϕ + vxx ◦ ϕ · ϕt = (vt x + vxx u) ◦ ϕ

we find that

(vx ◦ ϕ)t = −
1
2
vx ◦ ϕ · ux ◦ ϕ + d.

Therefore, for a fixed x ∈ S, vx ◦ ϕ solves the ordinary differential equation

ż(t) = −
1
2

f (t)z(t)+ d,

where, by (2.8),

f (t) = (ux ◦ ϕ)(t, x) = 2 tan
(

arctan
(

u0x (x)
2

)
− t
)
.

The general solution is

z(t) = d
∫ t

0
e(F(τ )−F(t))/2dτ + z(0)e−F(t)/2.
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where F(t) =
∫ t

0 f (s)ds. Now eF(t)/2 is the unique solution of
(
eF(t)/2)

t =
1
2 f (t)eF(t)/2 with eF(1)/2

= 1. Since

(
√
ϕx )t =

ϕt x

2
√
ϕx

=
ux ◦ ϕ

2
√
ϕx ,

we deduce by (2.7) that

eF(t)/2
=

√
ϕx = cos t +

u0x

2
sin t.

Using that (vx ◦ ϕ)(0, x) = v0x (x) we get

(vx ◦ ϕ)(t, x) =
1

√
ϕx

(
d
(

sin t +
u0x

2
(1 − cos t)

)
+ v0x

)
.

The proof is finished by observing that Vx = vx ◦ ϕ · ϕx . �

We can now compute the Jacobi fields along geodesics.

Proposition 4.3. Let ϕ : [0, T ∗(u0)) → Mk be the geodesic with ϕ(0) = id and ϕt (0) = u0 for some u0 ∈ Tid Mk

with |u0|id = 1. Let w0 be an element of Tid Mk with decomposition w0 = c0v0 + c1u0 for some c0, c1 ∈ R, and
v0 ∈ Tid Mk Ḣ1-orthogonal to u0. The unique Jacobi field t 7→ W (t;w0) with W (0;w0) = 0 and ∇ϕt W (0;w0) = w0
is given by

W (t;w0) = c0tϕt (t)+
c1

2

(
v0 sin 2t +

∫ x

0
v0x u0x dy sin2 t

)
.

Proof. Since 〈v0, u0〉id = 0, Lemma 4.2 implies that the parallel translation of v0 along ϕ is given by

V (t; v0) =

∫ x

0
v0x (y)

(
cos t +

u0x (y)
2

sin t
)

dy.

The result now follows from the formula (4.1) for the Jacobi field. �

5. Riemannian exponential map

The Riemannian exponential map expm at a point m of a Banach manifold M is always a local diffeomorphism at
0 ∈ TmM by the inverse mapping theorem. In the case of Rot(S)\Dk(S) ' Mk we will find that, for each ψ , expψ is
in fact a global diffeomorphism, thereby providing global normal coordinates on the manifold.

Let U be a tangent vector at ψ ∈ Mk and let t 7→ ϕ(t; U ) be the geodesic with ϕ(0; U ) = ψ and ϕt (0; U ) = U .
Let D ⊂ T Mk consist of all U such that the maximal existence time of ϕ(·; U ) is larger than 1. Then exp is the smooth
map D → Mk defined by

exp(U ) = ϕ(1; U ).

The restriction of exp to the tangent space TψMk is denoted by expψ : Dψ → Mk , where Dψ = D ∩ TψMk .

Theorem 5.1. For any ψ ∈ Rot(S)\D(S) ' Mk the Riemannian exponential map is a diffeomorphism from
Dψ ⊂ TψMk onto Mk .

Proof. By right-invariance we may assume that ψ = id . We will first show that expid is onto. Let ψ1 be an arbitrary
element in Mk . We need to find an element u0 ∈ Tid Mk with |u0|id = 1 and a time t1 > 0 with t1 < T ∗(u0) such that
exp(t1u0) = ψ1. We may assume that ψ1 6= id . Then

0 <
∫
S

√
ψ1x dx <

(∫
S
ψ1x dx

)1/2

= 1,

so that we may choose t1 ∈ (0, π2 ) such that

cos t1 =

∫
S

√
ψ1x dx . (5.1)
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Let, for x ∈ S ' [0, 1],

u0(x) =
2

sin t1

(∫ x

0

√
ψ1x dy − x cos t1

)
. (5.2)

Note that by the choice of t1 it holds that u0(0) = u0(1) = 0. As

u0x (x) =
2

sin t1

(√
ψ1x (x)− cos t1

)
(5.3)

belongs to H k−1(S), we infer that u0 ∈ Tid Mk
' Ek . Moreover,∫

S
u2

0x dx =
4

sin2 t1

∫
S

(
ψ1x − 2

√
ψ1x cos t1 + cos2 t1

)
dx .

Using that
∫
S ψ1x dx = 1 we find in view of (5.1) that

|u0|
2
id =

1
4

∫
S

u2
0x dx = 1.

Furthermore, by (2.6) the condition t1 < T ∗(u0) amounts to

t1 <
π

2
+ arctan

(
u0x (x)

2

)
for x ∈ S.

This is equivalent to

2 tan
(

t1 −
π

2

)
< u0x (x) for x ∈ S.

Since tan
(
t1 −

π
2

)
= −

1
tan t1

, formula (5.3) for u0x shows that this holds if and only if

−cos t1 <
√
ψx (x)− cos t1 for x ∈ S,

which is obviously a true statement. This proves that t1 < T ∗(u0).
Now let ϕ : [0, T ∗(u0)) → Mk be the geodesic with ϕ(0) = id and ϕt (0) = u0 so that exp(t1u0) = ϕ(t1). Formula

(2.7) yields√
ϕx (t1, x) = cos t1 +

u0x

2
sin t1.

Comparing this expression with (5.3) we find that

ϕx (t1, x) = ψ1x (x), x ∈ S.

Since ϕ(t1, 0) = ψ1(0) = 0, we obtain ϕ(t1) = ψ1. This proves that exp maps the set Did onto Mk .
Let us now show that expid : Did → Mk is injective. Suppose there exist u0, v0 ∈ Tid Mk with |u0|id = |v0|id = 1

and times t1, s1 > 0 such that t1 < T ∗(u0), s1 < T ∗(v0), and

exp(t1u0) = exp(s1v0). (5.4)

For w ∈ Tid Mk let ϕ(·;w) be the geodesic with ϕ(0;w) = id and ϕt (0;w) = w. We can phrase the assumption (5.4)
as ϕ(t1; u0) = ϕ(s1; v0). Thus (5.4) together with (2.7) give

cos t1 +
u0x

2
sin t1 = cos s1 +

v0x

2
sin s1. (5.5)

Integrating both sides of this equation over S we deduce that cos t1 = cos s1. Since the maximal existence time is less
than π

2 for all geodesics, we infer that t1 = s1. Now (5.5) clearly implies that u0 = v0. This establishes injectivity.
Smoothness of the inverse of expid follows from the expressions (5.1) and (5.2). �

From the proof of Theorem 5.1 we extract the following explicit formula for the logarithm.
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Corollary 5.2. If ψ ∈ Mk and we define r ∈ (0, π2 ) by

r = arccos
(∫
S

√
ψx dx

)
,

and u0 : S → R by

u0(x) =
2

sin r

(∫ x

0

√
ψx dy − x

∫
S

√
ψx dx

)
= −

2
sin r

A−1 Dx (
√
ψx ),

then ru0 ∈ Did , |u0|id = 1, and

exp(ru0) = ψ.

6. Length-minimizing geodesics

Using the global normal chart established in Theorem 5.1, we can immediately deduce the following theorem. In
its statement L(α) denotes the length of a piecewise C1-path α in Rot(S)\Dk(S) with respect to the Ḣ1 right-invariant
metric.

Theorem 6.1. Any two points ψ0, ψ1 ∈ Rot(S)\Dk(S) can be joined by a unique geodesic ϕ. Moreover, this geodesic
is strictly length-minimizing. More precisely, if α is any piecewise C1-path joining ψ0 and ψ1, then L(ϕ) ≤ L(α) and
equality holds if and only if a reparametrization of α equals ϕ.

Proof. The first half is obvious in the light of Theorem 5.1. For the second half we refer to Theorem 6.2 in Chapter 8
of [10]. �

In view of Theorem 6.1, we may define a metric dḢ1(·, ·) on Mk by letting dḢ1(ϕ, ψ) for ϕ,ψ ∈ Mk be the length
of the unique geodesic joining ϕ and ψ . Since d(ϕ, ψ) = d(id, ϕ ◦ ψ−1) whenever ϕ,ψ ∈ Mk by right-invariance
of the Ḣ1-metric, Corollary 5.2 yields

dḢ1(ϕ, ψ) = dḢ1(id, ϕ ◦ ψ−1) = arccos
(∫
S

√
(ϕ ◦ ψ−1)x dx

)
. (6.1)

A change of variables gives

dḢ1(ϕ, ψ) = arccos
(∫
S

√
ϕxψx dx

)
. (6.2)

We will write (Mk, dḢ1(·, ·)) when we consider Mk as a metric space endowed with this metric. An interesting global
property of the manifold Mk is its diameter defined as

diam(Mk) = sup
{

dḢ1(ψ0, ψ1) | ψ0, ψ1 ∈ Mk
}
.

Theorem 6.2. The diameter of the space Rot(S)\Dk(S) ' Mk endowed with the Ḣ1 right-invariant metric is π
2 .

Proof. By (6.1) we have

diam(Mk) = sup
{

dḢ1(id, ψ) | ψ ∈ Mk
}

= arccos
(

inf
ψ∈Mk

∫
S

√
ψx dx

)
. (6.3)

In view of (2.1) the minimizing problem

I = inf
ψ∈Mk

∫
S

√
ψx dx,

can be reformulated as

I = inf
{∫
S

√
1 + f dx

∣∣∣∣ f ∈ H k−1(S), f > −1,
∫
S

f dx = 0
}
.
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Define a sequence { fn}n≥1 of functions S ' [0, 1) → R by

fn(x) =


−1 +

1
n

0 ≤ x < 1 −
1
n
,

n
(

1 −
1
n

)2

1 −
1
n

≤ x < 1.

The functions fn satisfy

fn > −1 and
∫
S

fndx = 0, n ≥ 1,

and ∫
S

√
1 + fndx =

(
1 −

1
n

)√
1
n

+
1
n

√
1 + n

(
1 −

1
n

)2

→ 0 as n → ∞.

Approximating the fn’s by smooth functions S → R with the same properties we infer that I = 0, and so, by (6.3),

diam(Mk) =
π

2
. �

We would also like to investigate the stability of the geodesic flow. The next result states exactly the rate at which
the geodesics spread apart.

Theorem 6.3. Let u0, v0 be two elements of Tid Mk with |u0|id = |v0|id = 1. Consider the geodesics ϕ :

[0, T ∗(u0)) → Mk and ψ : [0, T ∗(v0)) → Mk such that ϕ(0) = ψ(0) = id, ϕt (0) = u0, and ψt (0) = v0.
For t ∈ [0, T ∗(u0)) and s ∈ [0, T ∗(v0)), it holds that

dḢ1(ϕ(t), ψ(s)) = arccos

(
cos t cos s +

2 − |u0 − v0|
2
id

2
sin t sin s

)
.

Proof. We compute, employing (2.7) and (6.2),

dḢ1(ϕ(t), ψ(s)) =

∫
S

√
ϕx (t, x)ψx (s, x)dx

=

∫
S

(
cos t +

u0x

2
sin t

) (
cos s +

v0x

2
sin s

)
dx

= cos t cos s + 〈u0, v0〉id sin t sin s. (6.4)

The identity

〈u0 − v0, u0 − v0〉id = |u0|
2
id − 2〈u0, v0〉id + |v0|

2
id

gives the stated result. �

7. Geodesic flow on a sphere

In view of the previous results it is clear that Rot(S)\Dk(S) ' Mk shares many properties of a convex subset of a
unit sphere, e.g. the curvature is constant equal to one and the exponential map provides global normal coordinates.
By constructing an explicit isometry from Mk to an open subset of the L2-sphere

Sk−1
= { f ∈ H k−1(S) | ‖ f ‖L2 = 1},

we will see that this intuition can be firmly established. In finite dimensions any Riemannian manifold with constant
positive curvature is locally isometric to a sphere (cf. [11]). It is therefore not the existence of an isometry that is most
surprising, but the simplicity of it.

Note that Sk−1
= F−1(1) where F : H k−1(S) → R is the smooth functional u 7→ ‖u‖

2
L2(S). Since T f F =

2〈 f, ·〉L2 is surjective with a splitting kernel at any point f ∈ Sk−1, we deduce that Sk−1 is a closed submanifold of
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Fig. 1. The map Φ : Mk
→ Uk−1 given by ϕ 7→

√
ϕx is a diffeomorphism and an isometry.

H k−1(S) (cf. [10]). We endow Sk−1 with the induced manifold structure and define a weak Riemannian metric on
Sk−1 by

〈ξ, η〉 f = 〈ξ, η〉L2 ,

for f ∈ Sk−1 and ξ, η ∈ T f Sk−1
' {ζ ∈ H k−1(S) | 〈ζ, f 〉L2 = 0}. We also define a metric dL2(·, ·) on Sk−1 by the

formula

dL2( f, g) = arccos(〈 f, g〉L2),

that is, dL2( f, g) is the L2-angle between f and g. Let us check that dL2(·, ·) satisfies the triangle inequality. For
f, g, h ∈ Sk−1 we introduce L2-perpendicular vectors e1, e2, e3 ∈ Sk−1 such that f = e1, g = a1e1 + a2e2, and h =

b1e1+b2e2+b3e3 for some constants a1, a2, b1, b2, b3 ∈ R. The triangle inequality dL2( f, h) ≤ dL2( f, g)+dL2(g, h)
amounts to

arccos(b1) ≤ arccos(a1)+ arccos(a1b1 + a2b2),

whenever a2
1 + a2

2 = b2
1 + b2

2 + b2
3 = 1. But this is just the triangle inequality for the geodesic triangle on the unit

sphere in R3 with corners at (1, 0, 0), (a1, a2, 0), and (b1, b2, b3). We deduce that dL2(·, ·) indeed is a metric on Sk−1.
Let Uk−1 be the open subset of Sk−1 given by

Uk−1
= { f ∈ Sk−1

| f > 0 on S}.

We equip Uk−1 with the manifold structure inherited from Sk−1. Note that the topology induced by dL2(·, ·) on Sk−1

is strictly weaker than the topology defined by the manifold structure. In particular, Uk−1 is not open in the metric
space (Sk−1, dL2(·, ·)). This is an effect of the fact that we are considering a weak Riemannian metric.

Theorem 7.1. The map

Φ : ϕ 7→ f =
√
ϕx

is a diffeomorphism Mk
→ Uk−1 and an isometry between the weak Riemannian manifolds (Mk, 〈·, ·〉Ḣ1) and

(Uk−1, 〈·, ·〉L2), that is,

〈TϕΦ(U ), TϕΦ(V )〉L2 = 〈U, V 〉ϕ,

for any ϕ ∈ Mk and tangent vectors U, V ∈ TϕMk (see Fig. 1). In particular, Φ is an isometry from the metric space
(Mk, dḢ1(·, ·)) to (Uk−1, dL2(·, ·)).

Proof. To see that Φ is bijective we construct its inverse. Put, for f ∈ Uk−1,

ϕ(x) =

∫ x

0
f 2(y)dy.

Then ϕ(0) = 0, ϕ(1) = 1, ϕx = f 2
∈ H k−1(S), and ϕx > 0. Hence ϕ ∈ Mk . As Φ(ϕ) = f we deduce that Φ is

bijective. Since both Φ and its inverse are easily seen to be smooth, it follows that Φ is a diffeomorphism Mk
→ Uk−1.

Using that

TϕΦ(U ) =
Ux

2
√
ϕx
,



2060 J. Lenells / Journal of Geometry and Physics 57 (2007) 2049–2064

Fig. 2. A geodesic t 7→ ϕ(t) in Mk with ϕ(0) = id and ϕt (0) = u0 is mapped by Φ to a geodesic t 7→ f (t) in Uk−1 with f (0) = 1
and ft (0) =

u0x
2 .

we get, for U, V ∈ TϕMk ,

〈TϕΦ(U ), TϕΦ(V )〉L2 =
1
4

∫
S

Ux Vx

ϕx
dx .

But this equals

〈U, V 〉ϕ =
1
4

∫
S

Ux Vx

ϕx
dx,

showing that Φ is an isometry. The fact that Φ satisfies

dḢ1(ϕ, ψ) = dL2(Φ(ϕ),Φ(ψ)),

can either be seen as a consequence of the previous statement or deduced directly from expression (6.2) for dḢ1(ϕ, ψ).
�

Several of the results obtained for Mk in the previous sections can now be interpreted on the sphere.

Group structure. The composition on Mk
= {ϕ ∈ Dk(S) | ϕ(0) = 0} is transferred to a multiplication M on Uk−1

such that Φ(ϕ ◦ ψ) = Φ(ϕ) M Φ(ψ) for ϕ,ψ ∈ Mk . With f = Φ(ϕ), g = Φ(ψ), we get

f M g = f ◦ ψ · g =

(
x 7→ f

(∫ x

0
g2(y)dy

)
g(x)

)
,

and g−1
= Φ(ψ−1) =

1
g◦ψ−1 . We conclude that the right multiplication operators Rg( f ) = f M g preserve the

L2-metric.

Geodesics. The geodesic f : J → Uk−1 with f (0) ≡ 1 and ft (0) =
u0x
2 ∈ T1Sk−1

= Fk−1, ‖
u0x
2 ‖L2 = 1, is given

by Φ ◦ ϕ where ϕ is the geodesic in Mk with ϕ(0) = id and ϕt (0) = u0. By (2.7) we have (see Fig. 2)

f (t) = cos t +
u0x

2
sin t.

Note that T Rg(η) = η ◦ ψ · g for η ∈ TgSk−1 and ψ(x) =
∫ x

0 g2(y)dy. Therefore, the geodesic starting at g with
initial velocity T Rg(

u0x
2 ) =

u0x
2 ◦ ψ · g ∈ Tg−1Sk−1 is given by

t 7→ f (t) M g =

(
x 7→

(
cos t +

u0x
(∫ x

0 g2(y)dy
)

2
sin t

)
g(x)

)
.

This gives explicit formulas for all geodesics in Uk−1.

Parallel translation. Let f and ϕ be as before and let ξ : J → TUk−1 be the parallel translation of a vector
v0x
2 ∈ T1Sk−1 along f . Then ξ(t) = TΦ ◦ V (t) where V : J → T Mk is the parallel translation of v0 along ϕ.
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Fig. 3. The sides of a geodesic triangle on the unit sphere are related as cos r = cos t cos s + cosα sin t sin s.

From Lemma 4.2 we infer that

ξ(t, x) =
Vx (t, x)
2
√
ϕx

= −
1
4
〈u0, v0〉id

(
sin t +

u0x

2
(1 − cos t)

)
+
v0x

2
.

More generally, the parallel translation along the geodesic starting at a point Φ(ψ) = g ∈ Uk−1 with initial velocity
T Rg(

u0x
2 ) =

u0x
2 ◦ ψ · g ∈ Tg−1Sk−1 can be obtained as T Rg ◦ ξ = ξ ◦ ψ · g.

Jacobi fields. With f (t) = cos t +
u0x
2 sin t as above, let w0x be an element of T1Sk−1 with decomposition

w0x = c0v0x + c1u0x for some c0, c1 ∈ R, and v0x ∈ Sk−1L2-orthogonal to u0x . The unique Jacobi field t 7→ η(t)
along f with η(0) = 0 and ∇ ftη(0) =

w0x
2 is given by

η(t) = c0t ft (t)+ c1
v0x

2
sin t.

Diameter. The fact that diam(Mk) ≤
π
2 means that the L2-angle between two vectors f, g ∈ Uk−1 is always less than

π
2 . This is obvious since

〈 f, g〉L2 =

∫
S

f gdx > 0

whenever f, g > 0. On the other hand, the equality diam(Mk) =
π
2 implies the existence of functions f, g ∈ Uk−1

with 〈 f, g〉L2 arbitrarily close to zero.
Geodesic triangle. Eq. (6.4) is the well-known formula for the lengths of the sides of a geodesic triangle on a sphere:
if two sides, separated by an angle α, have lengths t respectively s, then the length r of the third side satisfies (see
Fig. 3)

cos r = cos t cos s + cosα sin t sin s.

Killing fields. Let t 7→ ψ(t) be a curve in Mk with ψ(0) = id and ψt (0) = v ∈ Tid Mk . For each t the map
ϕ 7→ ϕ ◦ ψ(t) is an isometry Mk

→ Mk . Hence the vector field

X (ϕ) =
d
dt

∣∣∣∣
t=0
ϕ ◦ ψ(t) = vϕx

is a Killing field on Mk . The isometry Φ : Mk
→ Uk−1 transforms X into the vector field ξ on Uk−1 given by

ξ(
√
ϕx ) = TϕΦ(X (ϕ)) =

(ϕxv)x

2
√
ϕx
.

Therefore we have shown that, for any fixed v ∈ Ek the vector field

ξ : f ∈ Uk−1
7→ fxv +

1
2

f vx ∈ T f Sk−1.

is a killing field on Uk−1.
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7.1. Parallel 1,1-tensors

To illustrate that the isometry Φ can also give new information about the quotient space Rot(S)\Dk(S), we consider
the following problem.

Problem 7.2. Determine the ϕ-parallel 1,1-tensor fields along a geodesic ϕ in Mk .

If ϕ : J → Mk is a geodesic, a 1,1-tensor along ϕ is a smooth map L : J → L(T Mk, T Mk) such that
L(t) ∈ L(Tϕ(t)Mk, Tϕ(t)Mk) for each t . Here L(T Mk, T Mk) denotes the vector bundle over Mk with the space
L(TψMk, TψMk) of linear continuous maps TψMk

→ TψMk as the fiber over ψ ∈ Mk . By definition the tensor field
L is ϕ-parallel if ∇ϕt L ≡ 0.

Let us point out that ϕ-parallel 1,1-tensors could prove relevant for the geometric study of Lax pairs for the
Hunter–Saxton equation. Indeed, for a vector field X along ϕ we have by definition

(∇ϕt L)X = ∇ϕt (L(X))− L(∇ϕt X),

so that in the chart Mk

(∇ϕt L)X = L t (X)− Γ (ϕ, L(X), ϕt )+ L(Γ (ϕ, X, ϕt )).

Letting B : J → L(Ek,Ek) be the 1,1-tensor along ϕ given by B(t) = −Γ (ϕ, ·, ϕt ), we see that

∇ϕt L = L t − [L , B].

Thus ∇ϕt L ≡ 0 if and only if L and B satisfy the Lax equation L t = [L , B]. Now it appears difficult to determine
L : J → L(Ek,Ek) from the equation L t = [L , B] when B = −Γ (ϕ, ·, ϕt ). However, we will see that by means of
Φ we can reduce Problem 7.2 to a trivial one.

Consider the stereographic projection from the south pole σ : Uk−1
→ Fk−1 given by

σ( f ) =
f −

∫
S f dx

1 +
∫
S f dx

.

It is easy to check that σ is a diffeomorphism from Uk−1 onto

Vk−1
= {α ∈ Fk−1

| 2α > |α|
2
L2 − 1 on S},

with inverse

σ−1
: α 7→

2α − |α|
2
L2 + 1

|α|
2
L2 + 1

.

Moreover, using that

T f σ(ξ) =
ξ
(
1 +

∫
S f dx

)
− (1 + f )

∫
S ξdx(

1 +
∫
S f dx

)2 .

we conclude that σ is an isometry from (Uk−1, 〈·, ·〉L2) to (Vk−1, 4
(|α|

2
L2+1)2

〈·, ·〉L2), that is, for any f ∈ Uk−1 with

σ( f ) = α and ξ, η ∈ T f Sk−1, it holds that

〈ξ, η〉L2 =
4

(|α|
2
L2 + 1)2

〈T f σ(ξ), T f σ(η)〉L2 .

Thus Vk−1 provides a global chart for Rot(S)\Dk(S).
The Christoffel map Γ̄ : Vk−1

× Fk−1
× Fk−1

→ Fk−1 for the metric spray on Vk−1 is characterized as usual by
the local formula (cf. [10])

−2〈Γ̄ (α,U, V ), g(α)W 〉L2 = 〈Dg(α) · U · W, V 〉L2 + 〈Dg(α) · V · W,U 〉L2 − 〈Dg(α) · W · V,U 〉L2 ,
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where, for each α ∈ Vk−1, the local representative g(α) : Fk−1
→ Fk−1 of the metric is the multiplication operator

g(α) : U 7→
4U

(|α|
2
L2 + 1)2

.

Since, for U, V ∈ Fk−1,

Dg(α) · V · U =
−4〈α, V 〉L2 g(α)U

|α|
2
L2 + 1

,

we find that

Γ̄ (α,U, V ) = 2
〈α,U 〉L2 V + 〈α, V 〉L2U − 〈U, V 〉L2α

|α|
2
L2 + 1

.

Now let ϕ be a geodesic in Mk . By right-invariance we may assume that ϕ starts at id with some initial velocity
ϕt (0) = u0 ∈ Tid Mk . In Vk−1, ϕ corresponds to the geodesic σ ◦ Φ ◦ ϕ = α : J 7→ Vk−1 given by

α : t 7→
sin t

1 + cos t
α0,

where α0 =
u0x
2 . Since αt (t) =

1
1+cos t α0, we see that U 7→ Γ̄ (α,U, αt ) : Fk−1

→ Fk−1 is just the multiplication
operator

U 7→
sin t

1 + cos t
U.

Hence, if L : J → L(Fk−1,Fk−1) is a 1,1-tensor field along α, we have

(∇αt L)(X) = L t X − Γ (ϕ, L(X), ϕt )+ L(Γ (ϕ, X, ϕt )) = L t X,

so that the equation ∇ϕt L̄ ≡ 0 implies that L ≡ L0 is a constant linear operator Fk−1
→ Fk−1. Therefore, in the chart

Vk−1 the computation of the 1,1-tensors parallel along a geodesic is trivial. Since we know the change-of-chart map
σ ◦Φ : Mk

→ Vk−1 and its inverse explicitly, it is now straightforward to obtain an explicit formula for L in the chart
Mk . This solves Problem 7.2.

8. Conclusions and remarks

The material presented in this paper shows that Eq. (1.1) can be viewed as the Euler equation for the geodesic
flow on a sphere. The simplicity of this geometric interpretation is related to the fact that solutions of (1.1) in
Lagrangian coordinates exhibit very simple time dependence. It is also reflected in several other properties of the space
Rot(S)\D(S) endowed with the Ḣ1 right-invariant metric: its diameter is π

2 , the curvature is positive and constant,
there exist no conjugate points along any geodesics, and there exists a unique, globally length-minimizing, geodesic
joining any two points of the manifold. It is perhaps surprising that so much can be said about an infinite-dimensional
diffeomorphism group. For example, while facts such as the existence of a globally length-minimizing geodesic
between any two points of a manifold can sometimes be obtained in the finite-dimensional setting by means of the
Hopf–Rinow theorem, the existence of minimal geodesics in infinite dimensions is usually very difficult to ascertain.
The Hopf–Rinow theorem is not available in the infinite-dimensional case due to the lack of local compactness, and it
is indeed easy to give an example of an infinite-dimensional ellipsoid on which there is no shortest geodesic joining
two antipodal points (see [10]).

The most widely studied example of an Euler equation describing the geodesic motion on a diffeomorphism group
are the Euler equations of fluid dynamics modeling the motion of non-viscous, homogeneous, and incompressible
fluid moving in a bounded smooth domain M ⊂ Rn . It was first discovered in [1], and later put on a rigorous
mathematical foundation in [5], that endowing the group Dµ(M) of volume-preserving diffeomorphisms of M with
the L2 right-invariant metric, the geodesics are described by the classical Euler equations. Since then much effort
has been put into understanding the geodesic flow on Dµ(M) in order to draw conclusions about the fluid motion.
Also other well-known nonlinear wave equations have been found to arise as Euler equations for the geodesic flow
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on diffeomorphism groups endowed with invariant metrics. For example, the Euler equation describing the geodesics
on the Virasoro group (a one-dimensional extension of the diffeomorphism group of the circle) equipped with the L2

right-invariant metric, is the well-known Korteweg–de Vries equation [15], while the H1 right-invariant metric yields
the Camassa–Holm equation [14].

In all these cases, however, the success of the geometric approach to the study of e.g. stability questions has
been limited because the underlying manifolds of diffeomorphisms have turned out to be very intricate objects. The
results in this paper show that the Hunter–Saxton equation provides an example of an Euler equation on an infinite-
dimensional diffeomorphism group which has enough structure to be interesting, but is still simple enough to be
tractable to analysis. Hopefully the insight gained from a study of such an intermediate example will prove useful also
in the investigation of the more complicated instances.

Finally, we mention some questions raised by the present work:

• Can the sphere interpretation be used to extend solutions of the Hunter–Saxton equation beyond breaking time?
Whereas all geodesics in the diffeomorphism group break in finite time, nothing hinders us to extend the
corresponding geodesics on the sphere indefinitely.

• Does the constant curvature of the Ḣ1 right-invariant metric tell us anything about the full H1 metric on the
diffeomorphism group?

• Is there a connection between the integrability of the Hunter–Saxton equation and the fact that it describes geodesic
motion on a sphere?
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